
Wireless Networks 11, 265–274, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Video Streaming System for Mobile Phones: Practice and Experience

HOJUNG CHA∗ and JONGMIN LEE
Department of Computer Science, Yonsei University, Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea

JONGHO NANG and SUNG-YONG PARK
Department of Computer Science, Sogang University, Mapo-gu, Shinsu-dong 1, 121-742, Korea

JIN-HWAN JEONG, CHUCK YOO and JIN-YOUNG CHOI
Department of Computer Science, Korea University, Sungbuk-gu, Anam-dong 5, Seoul 136-701, Korea

Abstract. This paper presents a case of video streaming system for mobile phone which has actually been implemented and deployed for
commercial services in CDMA2000 1X cellular phone networks. As the computing environment and the network connection of cellular
phones are significantly different from the wired desktop environment, the traditional desktop streaming method is not applicable. Therefore,
a new architecture is required to suit the successfully streaming in the mobile phone environment. We have developed a very lightweight
video player for use in mobile phone and the related authoring tool for the player. The streaming server has carefully been designed to provide
high efficiency, reliability and scalability. Based on a specifically-designed suite of streaming protocol, the server employs an adaptive rate
control mechanism which transmits the media packets appropriately into the network according to the change in network bandwidth.

Keywords: wireless video streaming, video codec, mobile phone, streaming server, authoring tools

1. Introduction

As high-speed wireless network technologies such as GPRS
and CDMA2000 1X become a reality, cellular phone is ex-
panding its role to be a computing device, not just a voice
communication device, and people are exploring to run var-
ious applications on cell phone [5]. However, the computing
environment of cellular phones is so different from the desk-
top processors that direct porting of the desktop applications to
cellular phone often finishes as a failure. The difference exists
in all aspects—CPU speed, memory size, display dimension
and so on. And importantly, porting itself is technically a big
problem because few debugging tools are available; in other
words, the computing environment is similar to that of early
computing systems a couple decades ago. Even though cell
phone has many limitations, it is believed as a key device in
pervasive computing because the number of cell phones being
sold is much more than the desktop system and the growing
number of people is using cell phones for data communication
to get connected to the Internet. In order to make cell phones
even more “pervasive”, running Internet-based applications
are of prime importance. Among the Internet-based applica-
tions, video streaming is particularly hard for two reasons:
frequent packet losses and lack of processing power of hand-
sets. Unlike the fixed-line networks, the wireless networks
have frequent packet losses as well as high RTT (round-trip
time) [7]. The packet loss is quite persistent regardless of time,
and the rate is relatively high (5–10%) by noise. This causes

∗ Corresponding author.
E-mail: hjcha@cs.yonsei.ac.kr

numerous jitters and image distortion while video clips are
streamed and played, which makes existing streaming meth-
ods not applicable. Furthermore, existing streaming methods
use video standards such as H.26x or MPEG, but the handsets
do not have processing power to decode and play compressed
bitstreams properly.

The major challenges for mobile streaming service are to
support a variety of access networks and terminals, and provide
the services in an uniform way. The Third Generation Partner-
ship Project (3GPP) is currently addressing mobile streaming
standardization which includes both protocol and codec [3].
The standardization is, however, somewhat heavy to apply
the standard technologies to the current mobile infrastructure.
The industry trend is rather towards mobile streaming ser-
vices based on proprietary protocols and codecs. There are
a few research and development effort for mobile streaming
systems. For instance, AT&T [2] and Fabri and Kondoz [4]
proposed streaming video systems for the EGPRS wireless
networks. Based on H.263 video streams, AT&T developed a
mobile streaming system and proposed a rate selection algo-
rithm which selects an appropriate streaming rate depending
on the channel quality. Fabri et al. developed a general stream-
ing system and several techniques for guarantying QoS. These
works are, however, based on a wide range of performance as-
sumptions and verified via simulations.

The main contribution of this paper is to present compre-
hensively the design and implementation details of a system
architecture that makes video streaming possible on the state-
of-the-art cell phones and the mobile networks. The architec-
ture has been actually deployed and presently services a large
number (over a million) of cell phones. Figure 1 illustrates



266 CHA ET AL.

Figure 1. System overview.

the overall architecture for the mobile video service system
developed in our work. The mobile phone is equipped with
a browser and a lightweight video player. With this phone, a
subscriber connects to the server that contains video contents.
The server of the browser located in the server system pro-
vides the content list in the form of browser menu. A video
clip is selected from the menu, and the clip is streamed or
downloaded from the streaming server. The content authoring
system converts video in existing format into our proprietary
LVF (Lightweight Video Format) files suitable for the video
player, and the file is uploaded into the server. The architec-
ture consists of three key components: the lightweight video
player running in a cell phone, the authoring system for the
player, and the server system for pumping bitstreams to the
cell phone. This paper discusses each component in details.

The paper is organized as follows. Section 2 discusses the
lightweight video player. Sections 3 and 4 describe the server
system and the authoring system respectively. The paper con-
cludes in Section 5.

2. Lightweight video player for mobile phone

This section discusses the lightweight video player we have
developed for use in mobile phone. The dithering issue and
the decoding process on mobile phone are also discussed.

2.1. LVF video codec

A popular processing core of cell phones is ARM7 [1]. It is
a RISC processor with UV pipeline which can execute one
instruction per clock cycle. Although a handset is in idle state,
it always runs some of the call processing tasks such as search-
ing a home agent, communication with a base station and so
on. Therefore, the available CPU cycles for actual applications
are much less than what the processor provides. The available
CPU processing power is typically about one fourth of the orig-

inal power and this is equivalent to only a few MIPS. When
a handset starts to run data communication protocol such as
TCP/IP, the available CPU cycles would obviously become
more scarce. Also as the amount of memory in cell phone is
very limited, it is difficult to buffer the streamed data in an
efficient manner. Buffering is a natural assumption in most
streaming algorithms found in the literature, but a typical cell
phone is not equipped with an enough memory to store an am-
ple amount of data. So the techniques such as the bi-directional
prediction are not useful.

One possible approach is to use an extra hardware to speed
up the video processing on cell phones. This approach is,
however, considered inappropriate in our research as the cell
phones are battery-operated and the use of extra hardware com-
ponent would make the battery life short. Consequently, what
we have been looking for is a software-based codec solution
which minimizes both the processing power and the mem-
ory consumption on cell phones. We have analyzed several
video compression algorithms available in terms of the pro-
cessing requirements and the compression ratio [8]. Among
considered are the entropy coding techniques—such as the run
length coding(RLE), Huffman coding, Arithmetic coding—
and the transform coding techniques—such as the discrete
cosine transform (DCT) and the wavelet transform. RLE is a
very simple encoding algorithm with low compression ratio.
Huffman and the arithmetic coding, on the other hand, result
in higher compression ratio, but they require more proces-
sor cycles. The transform coding technique such as DCT im-
proves the compression with quantization [9]. The well-known
MPEG compression algorithm, for instance, follow the se-
quence of ‘complex’ compression through the sub-sampling,
transform coding, quantization, and the modified Huffman
coding phases. Recently there has been active research on the
wavelet transform coding. The computation complexity of the
wavelet transform varies according to its basis function [6].
After carefully analyzing relationship between the compres-
sion ratio and the computational complexity of various coding
techniques, we have developed a wavelet-based video codec,
LVF(Lightweight Video Format), which reduces the compu-
tational complexity of video coding/decoding so as to run it
on existing cell phones.

Basically LVF is one of the block-based hybrid video
codecs such as MPEG-x and H.26x. However, as these codecs
require substantial decoding complexity, we have modified the
key sub-coding algorithms used in typical block-based hybrid
video codecs: the transform coding and the entropy coding.
Instead of using the CPU intensive DCT which is hardly ac-
ceptable for handset processor, LVF uses a wavelet function
for the transform coding. It is well understood that a wavelet
function runs very fast while yielding low bit rate and it is
adequately used for even real-time video coding on low-end
hardware such as the handset processors. As for the entropy
coding, LVF uses a modified version of RLE. Although the
Huffman decoding is popular for the entropy coding, its CPU
requirement is non trivial; for instance, every access for the
codeword table on ARM7TDMI with no CPU cache gener-
ates a memory reference. RLE is another alternative. RLE has,



A VIDEO STREAMING SYSTEM FOR MOBILE PHONES 267

however, a shortcoming of compression ratio—especially in
the case the run length becomes 1 frequently. That is, if there
are many coefficients with run length of 1, the data size can
be larger than the original data size. To overcome this draw-
back, the normalization step is inserted between the quanti-
zation phase and the entropy coding phase. LVF normalizes
the coefficients generated by quantization phase and then runs
the RLE coding. This way, all coefficients have, after normal-
ization, common points such as even number or multiple of
3. Consequently the RLE with the normalization step add-on
outperforms the original scheme as the encoding complexity
reduces.

Table 1 and 2 shows the performance of LVF compared
to H.263. Both LVF and H.263 are implemented on a Pen-
tium III 500 MHz processor. Three video clips of the canon-
ical form are used for the experiment, “Miss America(MA)”,
“Foreman(FM)” and “Carphone (CP)”, and the original clips
are encoded with four different compression rates. Two metrics
are used for the performance measurements: the CPU process-
ing time and PSNR for the image quality. The figures in the
table explain that the image quality of LVF is generally worse
than that of H.263, but the processing overhead is greatly re-
duced with LVF. At the compression rate of 55 kbps, for in-
stance, the PSNR value of LVF is approximately 4–5 dB lower
than that of H.263. However, by sacrificing the image qual-
ity of 5 dB, LVF has reduced the processing time about 25
times (164 ms/4070 ms) over H.263. The 5 dB difference of
PSNR could be meaningful, but this degree of quality degra-
dation becomes in reality negligible when we consider the fact
that the images are rendered on resolution devices such as the
handset LCDs (typically 112 × 96). Overall, the experimental
results state that the wavelet-based LVF delivers a dramatic
processing time improvement with only a little quality degra-
dation and hence it is lightweight enough to be used for handset
applications.

Table 1
PSNR comparison (unit:dB).

Compressed
bitrate (bps) 55,563 29,489 21,375 17,915

MA H.263 48.1 45.3 44.7 44.4
LVF 43.0 38.0 35.3 33.5

FM H.263 44.8 42.2 40.8 39.3
LVF 40.9 34.4 30.8 28.5

CP H.263 47.4 44.6 42.7 41.5
LVF 41.4 35.3 31.9 29.8

Table 2
Decoding time comparison (unit: milliseconds).

Compressed
bitrate (bps) 55,563 29,489 21,375 17,915

MA H.263 4,070 2,906 2,608 2,542
LVF 164 153 146 135

FM H.263 14,668 11,652 9,908 8,872
LVF 711 652 626 586

CP H.263 11,028 10,227 8,561 7,780
LVF 590 565 555 507

Figure 2. Dithering on mobile phones.

2.2. Dithering on mobile phone

A common type of the off-the-shelf cell phones has a dis-
play device with different number of colors; e.g., gray scale
LCDs, 256-color or 65536-color LCDs. The video decoder
running on cell phones should therefore perform dithering
for a better image quality. Dithering is a process of convert-
ing 24-bits device-independent images into appropriate image
formats suitable for LCD display. The dithering algorithm is
usually applied to a RGB image obtained from the up-sampled
YUV pixels as shown in figure 2(a). As dithering algorithms
usually work on the whole pixels on every frame, the computa-
tion requirement is not trivial. Hence, it is necessary for a video
decoder to support the dithering mechanism at the decoding
level rather than at the rendering level as shown in figure 2(b).
Here, “decoding level” means that the output of the inverse
function of the wavelet transform becomes a dithered YUV
image. This approach can reduce the memory operations and
the arithmetic computation associated with RGB conversion
and up-sampling which are critical to performance and power
consumption. The core of the dithering in decoding level is to
compute the dithering and the inverse function of the wavelet
transform simultaneously. This way, the dithering overhead is
completely absorbed into the computation of the inverse func-
tion. The decoder developed in our work is based on an ordered
dithering algorithm which only requires pixel coordinates and
pixel values. Figure 3 shows an example of dithered images
on mobile phone with different color depths.

2.3. Decoder architecture

The operating systems running on cell phones should be min-
imal and provide an optimal way of handling preset task



268 CHA ET AL.

Figure 3. Example of dithered images on mobile phones with different color depths.

Figure 4. Decoder architecture for cell phones.

priorities based on an efficient task-based scheduling policy.
In order not to intervene the underlying operating system’s
scheduling principles, we have implemented our codec as an
API library and attached it to the UI (User Interface) task. The
UI task accesses the fundamental system services and as an
LVF player in our implementation. It encompasses the decoder
API set, in addition to the management facilities for stored
data, network stream and LCD rendering. Figure 4 illustrates
the decoder architecture for cell phones. The overall decoding
process is as follows: The UI task initializes the running en-
vironment of the decoder API library—for example; creating
timers for decoding and for rendering, file descriptors, UDP
network connection and so on. When the decoding timer is
expired, the UI task invokes the decoder API which decodes
incoming stream and subsequently stores reconstructed im-
ages in UI frame buffer with PTS (Presentation Time Stamp).
In the case of the rendering timer expired, the UI task checks
a frame buffer and renders the reconstructed images on ap-
propriate PTS. For streaming, the UI task receives network
packets, stores it to the decoder buffer, and follows the same
processes as the local decoding.

3. Wireless streaming server

This section describes the server issues for the wireless stream-
ing system we have developed. The server architecture is de-
scribed first and the rate control policy used in our implemen-
tation is then presented.

3.1. Structure of streaming server

The streaming server is targeted for multi-CPU platforms
which can support thousands of concurrent media streams.

The server is designed for high efficiency, reliability and scal-
ability. Figure 5 illustrates the server structure. The server
consists of admission controller, resource manager, load bal-
ancer and task pool. The number of tasks in a task pool is
equivalent to the number of processors in the server hardware.
A task allocated to a processor is in charge of actual media
streaming. The task consists of disk manager, network man-
ager, buffer manager, message handler and task manager. A
user’s service request is processed as follows. The listener de-
tects a new service request. The admission of this request is
decided by the admission controller. The decision is based on
the availability of system resources. That is, the admission con-
troller admits a request only when the extra system resources
required by the new request are available in the system. This is
because the streaming server has to guarantee QoS of the ex-
isting sessions currently under services. The system resources
are maintained by the resource manager and typically include
cpu usage, disk bandwidth, network bandwidth and memory
size. The resource manager has to maintain an up-to-date us-
age information for various system resources. Once admitted,
the request updates the resource usage and a processor to ex-
ecute the request is selected by load balancer. By monitoring
the system loads, the load balancer distributes the requests to
processors appropriately to maintain the load level of each
processor equal. The task manager in a task is responsible for
scheduling the stream request to meet its timing constraints.

The stream service model used in our work is a server-
push model. The server should, therefore, handle clients with
different bitrate characteristics in a consistent manner to guar-
antee their deadlines. Upon receiving a request from client, the
server reads a fixed-size media block from disk into buffer, an-
alyzes the stream and transfers it to network according to its
media rate.

The video content stored in the storage consists of a se-
quence of media packets. Each packet has a timestamp which
denotes the latest time it should be shipped into network. The
local timestamp of media packet is added to the system time,
which is managed by the stream scheduler (i.e., task manager),
and then the media packet is inserted into the time-lined job
queue where the requests are already sorted according to their
final timestamps. The scheduler examines the queue period-
ically and transmits all the media packets whose timestamps
are within the current scheduling period. Here, the scheduling
period is called Tschedule. Figure 6 illustrates the concept of
stream scheduling in our work.

Although the server is designed to use the system resources
effectively, the client’s service is not guaranteed when the



A VIDEO STREAMING SYSTEM FOR MOBILE PHONES 269

Figure 5. Server structure.

Figure 6. Stream scheduling.

system capacity is exceeded by allowing excessive number of
clients. A streaming system should be provided with an ade-
quate admission control mechanism, which decides the admis-
sion of a new request, based on the current resource availability
of the server. The decision should, of course, not violate the
QoS requirements of clients already in service. The admission
control used in our work is based on the current system load as
well as the resource requirements of a new client. The resource
requirements of a new stream is known a priori. The system
loads such as processor usage and disk access bandwidth may,
however, vary dynamically depending on the client behaviors
and the underlying operating systems. The server periodically
checks the resource usage of system components and updates
them in the resource table. This resource information is used
as a basis for admission control. Multiple criteria are used for
the resource availability: processor usage, memory capacity,
disk and network bandwidths.

3.2. Control policy for wireless streaming

The handset such as the mobile phone has many practical
limitations for use in media streaming: especially, the CPU
processing power and the memory size. For streaming ser-
vices, the handset has to decode video stream while receiving
the network packets. It is therefore necessary to minimize the
processing cost for handling the network packets to provide a
better video quality. Optimizing the network-related software
for the handset is one approach. The careful management of
the streaming protocols and policy at the streaming server can
also reduce the overhead on the handling of network packets
in handset. The actual media streaming or download is done
with a specifically designed suite of communication proto-
cols. A TCP-based control protocol is used between the server
and mobile phone to exchange control messages. The data
transport protocol is based on UDP for streaming and TCP for



270 CHA ET AL.

download, respectively. The streaming uses UDP as its base
protocol since the timely delivery of media packet is important,
due to the reduced protocol overhead of UDP, in streaming
applications. For download, however, a TCP-based protocol
is used since the download operation should provide a lossless
media delivery.

The media streaming server implemented in our work uses
an adaptive rate control mechanism with which the media
packets are pushed into the network with varying intervals—
adaptive to the changes in current data transfer size and the
available buffer size at the handset. The rate control mech-
anism consists of three key parts. First, the original media
stored in the form of multiplexed video and audio streams is
splitted into separate media types and then pushed into the
network. This is to reduce the demultiplexing overhead in the
handset. Second, the splitted audio and video data is packed
into a network packet whose size is determined by the size of
P-MTU (path maximum transmission unit). This procedure at
the server helps the handset to reduce the computational re-
source in assembling small fragmented network packets into
data packet for decoding. Third, the network packet is pushed
into the network according to the relative deadline, not the
absolute deadline, of media time which reflects the current
status of the mobile handset. Multimedia data streams often
have variable bit rates. Pushing media packets into the net-
work simply following its time stamp could result a network
congestion and consequently causes packet losses or media
delays. In mobile environments, it is particularly important
to provide a streaming bandwidth as constantly as possible
since the changes in streaming bandwidth may result an un-
predictable delays in allocating and freeing the wireless chan-
nels. To maintain a constant streaming bandwidth, our adaptive
mechanism calculates the media transmit interval appropri-
ately for each network packet, based on the constantly updated
time stamps which reflect the status of the handset. The adap-
tive rate control mechanism used in our work is outlined as
follows:

Adaptive rate control for streaming service(){
Calculate network packet size();
Pack media data into network packet();
Get handset state();
Calculate new timestamp for network packet();
Add network packet to streaming scheduler();

In the case of download services, the server should employ
a media transport mechanism which makes use of the available
network bandwidth efficiently for the maximum throughput.
The underlying transport protocol used for download appli-
cations is typically the connection-oriented and reliable TCP.
In the wireless and mobile environments, however, the packet
loss frequently happens due to the transmission error as well as
the network congestion. In particular, the packet loss caused by
the transmission error mistakenly activates the congestion con-
trol mechanism of TCP and consequently the actual through-
put tends to decrease. In order to cope with the communica-
tion characteristics of the mobile environment, we have imple-

Figure 7. Adaptive download rate control.

mented an application-level adaptive rate control mechanism
for media downloads. It is similar to the congestion control
mechanism used in TCP in a way that the media transmit rate
varies depending on the changes of the underlying network
condition. The rate control mechanism starts pushing the net-
work packet with the base rate of RB . If the network packets
are successfully transmitted, the push rate is increased by RI .
If the packet transfer fails, however, the push rate is decreased
by RD . Figure 7 illustrates the adaptive control mechanism
used in the download application. The streaming server dy-
namically controls stream the push rate. The initial push rate
RB is derived from the initial push period PB . Similarly, RI

and RD are obtained from PB and PD , respectively. RI and RD

are not constant values, but depend on the changes in PB , PI

and PD . The figure shows the relationship between the push
rate and the push period.

The actual values of RB , RI and RD for the underlying
service network can be experimentally measured and deter-
mined. In our experiment, the streaming server is physically lo-
cated in the private network of a commercial service provider.
By hosting the server in a relatively optimal environment, the
packet loss or the network delay due to the congestion in the
wired portion of the networks can be minimized. The Sam-
sung CDMA2000 mobile phone (X270) is used as a mobile
terminal for media download. In order to analyze the per-
formance effect of various rate control mechanisms on the
application-level download throughput, we have experimented
two kinds of adaptive mechanisms (RateControl1 and Rate-
Control2) and compared their performance with the mecha-
nism with no rate control (NoControl). The network packet
size used for the experiment is 1460 bytes which is the max-
imum data packet size (i.e., excluding protocol headers) that



A VIDEO STREAMING SYSTEM FOR MOBILE PHONES 271

is not fragmented on Ethernet. The value RB is set 23 kbps
and it is the average throughput which has been experimen-
tally obtained in our environment. The initial push period PB

is, therefore, 1460×8
23 = 500 milliseconds. Equations (1) and

(2) respectively show the values of PB , PI and PD which are
used for RateControl1 and RateControl2 in the experiments.
Here, PC and Rc stand for the current push period and the cur-
rent push rate. Note that RateControl2 has smaller PD , i.e. a
smaller RD , than RateControl1. In other words, RateControl2
decreases the push rate more slowly than RateControl1 in the
case of transmission failure.

PB = 500, PI = 50, PD = PC

2
(msec) (1)

PB = 500, PI = 50, PD = PC

3
(msec) (2)

Figure 8 shows the throughput comparison for the three
mechanisms. For each case, 10 experiments have been con-

Figure 8. Throughput comparison.

Figure 9. Translation process.

ducted. The result shows that the throughput of RateControl2
is approximately 50 and 40% better than those of NoControl
and RateControl1, respectively. This means that the adaptive
rate control mechanism is indeed effective and increases the
application-level throughput. The experiments also reveal that
the parameters should be carefully selected for optimal per-
formance.

4. Contents generation systems

This section presents the basic transcoding mechanism and
various authoring tools used in our implementation.

4.1. Basic transcoding mechanism

The main task of authoring tool is to transcode the video clips
in digital forms into streams for our lightweight video player.
However, since the digital video clips usually compressed



272 CHA ET AL.

in various formats such as MPEG-1/2/4, AVI, ASF, and WMV,
it would be very hard to develop separate transcoders that
work in compressed domain directly. Therefore, we have de-
cided to use an approach to decode the source video clips
into a raw format first, and then re-encode it to our format.
In this transcoding process, however, since the source video
clips are usually generated for the desktop computers with
a high quality display (for example, 1280 × 1024 pixels, true
color (224-bit color), 30 frames/second), their resolution, color
depth, and frame rate should be adjusted accordingly in order
to be displayed on mobile phones that have a small display
size (for example, 112 × 96 pixels), a limited color depth
(for example, 4-level gray or 256 color), and a limited com-
puting power (for example, 3–4 frames/seconds). Figure 9
shows the main processing steps to transcode the source video
clips to our file format. Let us explain each step in more
details.

Decoding. In order to convert the compressed video clips into
a sequence of raw images, the video clips should be decoded
first. This task could be easily accomplished with the Microsoft
DirectX technology on Windows environment. A filter graph
is dynamically configured with respect to the compression
format (or type) of the source video clip, and it decodes and
produces a sequence of raw images. This approach helps us
to transcode any video clips that could be decoded and dis-
played with Microsoft media player on Windows into our file
format.

Image Quality Adaptation. After the video stream is con-
verted into a sequence of raw images, it should be adapted
to be displayed on mobile phone. The adaptation process in-
cludes the resizing step which changes the resolution of the
images, and the re-sampling step which sub-samples the im-
age frames. The decoder in the mobile phone also performs
the dithering task which reduces the color depth of image ac-
cording to the target display device. Let us explain each step
in more details.

The resizing step sub-samples the pixels in the video frames
to reduce the resolution of the target video stream (usually,
112 × 96 pixels) in RGB space. If the resolution of the source
video stream is not a multiple of sixteen, some pixels are
truncated for the efficient wavelet-based encoding. The re-
sampling step reduces the frame rate of the source video stream
with respect to the wireless network and mobile phone con-
straints. Figure 10 shows an example of the bit rates of three
video streams (112×96 pixels, true colors) that have different
motion activities and encoded with our LVF encoder, in which
“akiyo” video stream has a lot of motion activities. As shown
in this figure, the bit rate of the video stream is proportional
to the frame rate and the amount of motion activities. If we
consider CDMA2000 wireless network whose bandwidth is
144 kbps, the video streams with more than 10 fps could be
serviced although there are a lot motion activities in the video
stream. However, as explained in the previous section, the bot-

Figure 10. Example of bitrates of LVF-encoded video stream.

tleneck of the wireless video service is the client computing
capability, not the wireless network bandwidth. It forces us to
reduce the frame rate of video stream to less than 10 frames
per second. Currently, the authoring tool statically generates
several versions of adapted video streams with different frame
rates. One of them is selected with respect to the client’s QoS
(such as client types), and pumped to client by the streaming
server.

Since the LCD display device of the mobile phones is usu-
ally darker than CRT or TFT terminals for the desktop com-
puters, an image processing technique that adjusts the bright-
ness and contrast of the image is also required to improve
the visual quality on mobile phone. Some other image quality
enhancement techniques such as histogram-equalization are
also helpful to enhance the image quality of the video clip on
mobile phone.

LVF Encoding. A sequence of dithered and sub-sampled im-
ages is encoded by our LVF video encoder, while the audio
part of video clip is decoded and converted into PCM format
(8KHz sampling, 16-bit LVF, mono sound) first with Microsoft
DirectX technology, and then re-encoded with EVRC format
by audio encoder. These two encoded streams are multiplexed
with appropriate time stamps by our encoder. The encoded
stream is saved as a file or delivered to the mobile phone di-
rectly for the streaming services.

4.2. Authoring system

Figure 11 shows the graphical user interface of our authoring
tool. It has many functional characteristics. The authoring tool
supports various transcoding options with which many QoS
parameters such as frame rate, resolution, color depth, bright-
ness/contrast/gamma values, and audio volume are adjusted.
This adjustment could be applied to whole video clip or only
to selected sequence. The tool also allows the author to select



A VIDEO STREAMING SYSTEM FOR MOBILE PHONES 273

Figure 11. Graphic user interface of the authoring tool.

the sub-sequence of video frame and attach a caption that de-
livers additional information on video clips. In order to easily
browse the video clip, the authoring tool provides two video
browsing views: a sequence of thumbnail images and video
X-ray image which is a collection of the pixels in the first (or
last) line (or column) of each image. The tool also provides
a mechanism to detect the shot boundary automatically and it
helps encode only the key frames of the video clip. The gener-
ated contents could be previewed on PC with the same quality
as on mobile phone.

5. Conclusion

The mobile streaming system presented in this paper has actu-
ally been implemented and commercially deployed national-
wide, by one of the major wireless carriers, in the Republic of
Korea. The number of LVF-enabled cell phones deployed in
the country are currently more than a million and we expect
that the number will grow sharply. As there are several types
of cell phones supporting different color space, the contents
providers make their video clips (combined audio and caption)
in gray (4-level) or color (256, 4096, 65536 colors) formats and
upload them into the server. People can receive and play video
clips stored in the server via their LVF-enbled cell phones. A
typical video clip is about 150 KBytes long (approximately 30
seconds of playback duration) and it normally takes less than
30 seconds to receive the whole clip in CDMA2000 backbone.
The server has been implemented to support 1,000 concurrent
streams and thoroughly tested to meet this requirement. As of
this writing, the daily traffic is in the order of a few tens of
thousands connections and the peak usage is about 100 con-
nections per minute. In this commercial service environment,

the daily server statistics persistently shows that the cases of
successful content streaming reaches approximately 95% of
the total streaming accesses.

Acknowledgments

This work was supported by the Basic Research Program of the
Korea Science and Engineering Foundation (grant No. R01-
2002-000-00141-0), and the ITRC Program (MMRC) of IITA,
Korea.

References

[1] ARM Ltd., http://www.arm.com.
[2] K. Chawla, Z. Jiang, X. Qiu and A. Reibman, Transmission of streaming

video over an EGPRS wireless network, in: International Conference
on Multimedia and Expo (ICME) 2000 (New York, July 2000) pp. 275–
278.

[3] I. Elsen, F. Hartung, Uwe Horn, Markus Kampmann and Liliane Pe-
ters, Streaming technology in 3G mobile communication systems, IEEE
Computer 34(9) (2001) 46–52.

[4] S.N. Fabri, and A.M. Kondoz, Provision of streaming media services
over mobile networks, in: 2nd International Conference on 3G Mobile
Communication Technologies (London, UK, March 2001) pp. 104–108.

[5] L. Garber, Will 3G really be the next big wireless technology?, IEEE
Computer 35(1) (2002) 26–32.

[6] A. Graphs, An Introduction to Wavelets, IEEE Computational Sciences
and Engineering 2(2) (1995) 50–61.

[7] L. Hanzo, Interactive cellular and cordless video telephony: state-of-the-
art system design principles and expected performance, Proceedings of
IEEE 88 (2000) 1388–1413.

[8] J.H. Jeong and Chuck Yoo, A server-centric streaming model, in: Pro-
ceedings of the 10th International Workshop on Network and Operating
System Support for Digital Audio and Video (Chapel Hill, June 2000).

[9] D. Legall, MPEG—A video compression standard for multimedia ap-
plications, Communications of the ACM 34(4) (1991) 46–58.



274 CHA ET AL.

Hojung Cha is currently a professor in computer
science at Yonsei University, Seoul, Korea. His re-
search interests include multimedia computing sys-
tem, multimedia communication networks, wire-
less and mobile communication systems and em-
bedded system software. He received his B.S. and
M.S. in computer engineering from Seoul National
University, Korea, in 1985 and 1987, respectively.
He received his Ph.D. in computer science from the
University of Manchester, England, in 1991.

E-mail: hjcha@cs.yonsei.ac.kr

Jongmin Lee is a Ph.D. candidiate in computer
science at Yonsei University, Seoul, Korea. His re-
search interests include wireless multimedia system,
QoS architecture, multimedia communication net-
works. He received his B.S. and M.S. in computer
science from Kwangwoon University in 1999 and
2001, respectively.

Jongho Nang is a professor in the Department of
Computer Science at Sogang University. He re-
ceived his B.S. degree from Sogang University,
Korea, in 1986 and M.S. and Ph.D. degree from
KAIST, in 1988 and in 1992, respectively. His re-
search interests are in the field of multimedia sys-
tems, digital video library, and Internet technologies.
He is a member of KISS, ACM, and IEEE.

Sung-Yong Park is an associate professor in the De-
partment of Computer Science at Sogang University,
Seoul, Korea. He received his B.S. degree in com-
puter science from Sogang University, and both the
M.S. and Ph.D. degrees in computer science from
Syracuse University. From 1987 to 1992, he worked
for LG Electronics, Korea, as a research engineer.
From 1998 to 1999, he was a research scientist at
Telcordia Technologies (formerly Bellcore) where
he developed network management software for op-

tical switches. His research interests include high performance distributed
computing and systems, operating systems, and multimedia.

Jin-Hwan Jeong received the B.S. and M.S. de-
grees in computer science from Korea University,
Seoul, Korea, in 1997, and 1999, respectively. He is
currently in Ph.D. course at Korea University. His
research interests include video processing for thin
devices, multimedia streaming and operating sys-
tems.

Chuck Yoo received the B.S. degree in electronics
engineering from Seoul National University, Seoul,
Korea and the M.S. and Ph.D. in computer science in
University of Michigan. He worked as a researcher
in Sun Microsystems Lab. from 1990 to 1995. He
joined the Computer Science and Enginnering De-
partment, Korea University, Seoul, Korea in 1995,
where he is currently a professor. His research inter-
ests include high performance network, multimedia
streaming, and operating systems.

Jin-Young Choi received the B.S. degree from
Seoul National University, Seoul, Korea, in 1982,
the M.S. degree from Drexel University in 1986, and
the Ph.D. degree from University of Pennsylvania,
in 1993. He is currently a professor of Computer Sci-
ence and Engineering Department, Korea Univer-
sity, Seoul, Korea. His current research interests are
in real-time computing, formal methods, program-
ming languages, process algebras, security, software
engineering, and protocol engineering.


