#title »ï°¢ÇÔ¼öÀÇ Á¤¸® == »ï°¢ÇÔ¼öÀÇ Á¤¸® == * ÀÛ¼ºÀÚ Á¶ÀçÇõ([mailto:minzkn@minzkn.com]) * °íÄ£°úÁ¤ 2008³â ¾î´À³¯ : óÀ½¾¸ === µ¡¼ÀÁ¤¸® === {{{ sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y) sin(x - y) = sin(x) * cos(y) - cos(x) * sin(y) cos(x + y) = cos(x) * cos(y) - sin(x) * sin(y) cos(x - y) = cos(x) * cos(y) + sin(x) * sin(y) tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x) * tan(y)) tan(x - y) = (tan(x) - tan(y)) / (1 + tan(x) * tan(y)) }}} === ¹è°¢Á¤¸® === {{{ sin(2 * x) = 2 * sin(x) * cos(x) cos(2 * x) = cos©÷(x) - sin©÷(x) = 2 * cos©÷(x) - 1 = 1 - 2 * sin©÷(x) tan(2 * x) = (2 * tan(x)) / (1 - tan©÷(x)) }}} === ¹Ý°¢ÀÇ Á¤¸® === {{{ sin©÷(x / 2) = (1 - cos(x)) / 2 cos©÷(x / 2) = (1 + cos(x)) / 2 tan©÷(x / 2) = (1 - cos(x)) / (1 + cos(x)) }}} === »ï°¢ÇÔ¼ö °ø½Ä ÃÑ°ýÁ¤¸® === {{{ sin(-¥è)=-sin¥è, cos(-¥è)=cos¥è, tan(-¥è)=-tan¥è sin©÷¥è+cos©÷¥è=1, sec©÷¥è-tan©÷¥è=1, csc©÷¥è-cot©÷¥è=1 sin(¥ð/2-¥è)=cos¥è, sin(¥ð/2+¥è)=cos¥è, sin(¥è¡¾¥ð/2)=¡¾cos¥è cos(¥ð/2-¥è)=sin¥è, cos(¥ð/2+¥è)=-sin¥è, cos(¥è¡¾¥ð/2)=¨®sin¥è sin(¥ð-¥è)=sin¥è, sin(¥ð+¥è)=-sin¥è, sin(¥è¡¾¥ð)=-sin¥è cos(¥ð-¥è)=-cos¥è, cos(¥ð+¥è)=-cos¥è, cos(¥è¡¾¥ð)=-cos¥è sin(¥á¡¾¥â)=sin¥ácos¥â¡¾cos¥ásin¥â, cos(¥á¡¾¥â)=cos¥ácos¥â¨®sin¥ásin¥â tan(¥á+¥â)=tan¥á+tan¥â/1-tan¥átan¥â, tan(¥á-¥â)=tan¥á-tan¥â/1+tan¥átan¥â sin2¥è=2sin¥ècos¥è cos2¥è=cos©÷¥è-sin©÷¥è=2cos©÷¥è-1=1-2sin©÷¥è, tan2¥è=2tan¥è/1-tan©÷¥è sin©÷¥è/2=1-cos¥è/2, cos©÷¥è/2=1+cos¥è/2, tan©÷¥è/2=1-cos¥è/1+cos¥è sin¥ácos¥â=1/2{sin(¥á+¥â)+sin(¥á-¥â)} cos¥ácos¥â=1/2{cos(¥á+¥â)+cos(¥á-¥â)} sin¥ásin¥â=-1/2{cos(¥á+¥â)-cos(¥á-¥â)} sin¥á+sin¥â=2sin(¥á+¥â/2)cos(¥á-¥â/2) sin¥á-sin¥â=2cos(¥á+¥â/2)sin(¥á-¥â/2) cos¥á+cos¥â=2cos(¥á+¥â/2)cos(¥á-¥â/2) cos¥á-cos¥â=-2sin(¥á+¥â/2)sin(¥á-¥â/2) }}}